
Opn.vote:
A Publicly Verifiable Blockchain-Based eVoting

System for Democratic Participation

Abstract. We introduce Opn.vote, a publicly verifiable and decentral-
ized voting application that offers both voter anonymity and end-to-end
verifiability. Voter anonymity is formally defined using a game-based ap-
proach, requiring that even a coalition of all participating authorities
should not be able to link a voter to their cast vote, even in scenarios
where election keys are maliciously generated.
To enhance usability and improve the voting experience, Opn.vote lever-
ages Ethereum, a public blockchain, with its EIP-4337 (Account Ab-
straction) to eliminate the need for voters to possess pre-existing digital
wallets or cryptocurrency to participate. The design of Opn.vote requires
no additional preparation beyond what is expected of a typical voter,
significantly lowering barriers to entry and reducing transaction costs by
≈ 51% compared to the leading voting system on Ethereum.
From a practical perspective, Opn.vote is set to be deployed during the
ABSTIMMUNG21 referendum in Germany in September 2025. The sys-
tem aims to transition 125,000 of the 250,000 participants to online vot-
ing, reducing transaction costs per vote from €2 to under €0.01. This
deployment will serve as a large-scale demonstration of Opn.vote’s po-
tential to deliver secure, accessible, and cost-efficient online voting.

1 Introduction
Verifiable elections provide a mechanism through which internal participants
and external observers can verify the validity of individual votes and the overall
electoral outcome, even if voting devices and servers are faulty or are outright
malicious [12]. Verifiability, alongside transparency, usability, and security, is key
in building trust, influencing each and every case of success and failure in the
implementation of e-voting [10]. Despite being central to the success of e-voting
at scale, verifiability raises several critical issues.
Challenges in Voter Verification. Statistics from elections using e-voting systems
show that a very small percentage of voters actually verify or succeed in per-
forming this verification [5,20]. This low verification rate is largely attributed to
the fact that the verification process is not usable enough, too complicated, and
confusing for the voters [24]. This issue has received considerable attention in the
context of national elections across various countries, including the Netherlands
and Germany [16].
Centralized vs. Decentralized Approaches to Verifiability. Verifiability is com-
monly achieved through the implementation of a public bulletin board [1,14,30],
which is typically managed by a singular entity, such as a voting server [13]. How-
ever, this centralized approach not only introduces vulnerabilities to single points
of failure (e.g., website outages, denial-of-service attacks, and data breaches)
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but could also undermine core security guarantees, such as privacy, correctness,
and resistance to voter suppression. Public blockchains offer a promising solu-
tion by shifting critical processes, such as voting, data storage, and tallying, to
a decentralized network. This ensures protocol integrity and correct execution
without reliance on a single authority, mitigating risks like censorship, tamper-
ing, or system failure. However, as discussed in a recent review by Kharman
et al. [23], many blockchain-based e-voting protocols proposed overlook practi-
cal constraints such as limited computational resources, high transaction costs,
and throughput limitations. Moreover, when practically deployed, these proto-
cols would often require voters to install wallet software and acquire cryptocur-
rency to pay transaction fees, significantly hindering usability and accessibility
(e.g., [25,31]). To the best of our knowledge, there are only two privacy-preserving
e-voting systems built on public blockchain technology, which are currently ac-
tive and in use: MACI (Minimal Anti-Collusion Infrastructure) [25] and Voc-
doni [31]. MACI uses zero-knowledge proofs to hide how each user voted, while
still allowing verifiability. However, it relies on a single trusted coordinator to
tally the final result, which is able to compromise voter privacy and requires a
trusted setup. Vocdoni’s architecture, on the other hand, relies on a permissioned
blockchain (Vochain) for vote casting, controlled by pre-approved entities, and
it uses Ethereum only for tasks like election setup. This design centralizes the
critical voting process and, as a result, may reintroduce some risks of collusion,
and single points of failure that public blockchains aim to eliminate.

Contributions. We present Opn.vote, a publicly verifiable and decentralized e-
voting system, designed to address the verifiability challenges in existing voting
solutions. With respect to voter verification, Opn.vote enhances the usability of
the verification process by publishing the election decryption key to a public
bulletin board post-tally. This approach facilitates straightforward end-to-end
verifiability and system transparency, eliminating the need for additional proof
verification mechanisms.

Moreover, Opn.vote delivers high usability and an improved voting experience
by imposing minimal computational requirements on voters. More precisely, vot-
ers are only required to encrypt their votes and sign the ballots using their private
keys, without the necessity of generating or verifying supplementary proofs. This
protocol design leads to a reduction of ≈ 51% of transaction costs compared to
MACI [25]. Opn.vote also offers flexibility by allowing voters to recast their votes
using the same credentials without requiring re-registration. In comparison to
other on-chain voting solutions, Opn.vote demands no additional preparation be-
yond standard expectations for voter participation. Notably, Opn.vote leverages
Ethereum’s EIP-4337 (Ethereum Improvement Proposal 4337, also referred to
as Account Abstraction) [6] to eliminate the need for transaction fees or wallet
creation for voters, both of which are typically required in other on-chain voting
systems [23]. Further technical details are provided in Section 4.

To formally model the security of Opn.vote, we generalize it into a generic
voting scheme and introduce a notion of voter anonymity based on indistin-
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guishability to capture its privacy. In particular, the generic scheme draws in-
spiration from FOO [18] and Cetinkaya et al.’s approaches [7], in which each
voter is issued a public credential by an authorized entity that may potentially
act maliciously. The voter derives their private credential from the public one
and uses it to vote anonymously. The definition of voter anonymity captures the
property that no adversary, including a coalition of all participating authorities,
should be able to link a voter to their cast vote, even in scenarios where elec-
tion keys are maliciously generated or revoting is involved. By proving that the
generic voting scheme satisfies the definition of voter anonymity, we also demon-
strate that Opn.vote adheres to this standard. This helps Opn.vote remove the
single point of failure seen in MACI [25], where a trusted entity might collude,
and it avoids the need for a trusted setup. Compared to Vocdoni [31], Opn.vote
enhances transparency and resilience by shifting critical processes to a public
blockchain. However, Opn.vote assumes the availability of an anonymous com-
munication channel, which we revisit to explore implementation possibilities in
light of recent advancements in blockchain-based technologies.

The last contribution consists of assessing Opn.vote’s efficiency in large-scale
elections; for this purpose, we present a comparative analysis with other vot-
ing systems. We note that Opn.vote remains an ongoing project. We discuss
the security challenges present in its current implementation and outline future
directions for mitigating these issues.

2 Voter Anonymity
We will now formally define the concept of voter anonymity by first establishing
the syntax of a voting system, drawing upon the work of Chaidos et al. [8].

2.1 Syntax of a Voting System

Election systems generally consist of multiple entities, which are assumed to be
single individuals for the sake of simplicity. The thresholdized version is discussed
in the context of a specific application (see Section 4).

Definition 1 (Voting System). A voting system VS is a tuple of PPT algo-
rithms (SetupElection,VerifyPK,Register,VerifyCred,Vote,Valid,Append,Publish,
VerifyVote,Tally,VerifyResult) associated to a result function ρ : (V × C)∗ → R
where V is the set of voters, C is a set of voting options, and R is the result
space, such that:

SetupElection(1λ): On input security parameter 1λ, generate the public and se-
cret keys (PK,SK) of the election. Below, PK is an implicit input.

VerifyPK(PK): On input the public key PK, outputs 1 if and only if PK is valid;
0 otherwise.

Register(1λ) : Is an interactive protocol run by the registrar R and a voter V
with an identifier id to output a public credential d. We simply write d ←
〈R(1λ, id,V),V(1λ)〉 as d is the same output of both parties. The registrar
then adds the pair (id, d) to the voter list L ← L ∪ {(id, d)}.
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A voting system is termed registration-free if d is set to ⊥, and the registra-
tion process is considered non-interactive if it involves only a single commu-
nication from R to the voter.

VerifyCred(d): On input credential d, outputs 0 or 1. The algorithm outputs 1
if and only if the credential is valid.

Vote(id, d, v): When receiving an id, a credential d, and a vote v, output a ballot
b, which is sent to the ballot box BB.

Valid(BB, b): On input ballot box BB and a ballot b, outputs 0 or 1. The algo-
rithm outputs 1 if and only if the ballot is valid.

Append(BB, b): On input the ballot box BB and a ballot b, appends b to BB if
Valid(BB, b) = 1.

Publish(BB): On input ballot box BB, outputs the public view PBB of BB, which
is the one that is used to verify the election.

VerifyVote(PBB, b): On inputs the public board PBB, a ballot b, it returns 0 or
1. This algorithm is used by voters to verify whether their ballot has been
properly processed and recorded.

Tally(BB,SK): on input ballot box BB and private key of the election SK, outputs
the tally r and a proof Π that the tally is correct w.r.t. the result function ρ.

VerifyResult(PBB, r,Π): On input public bulletin board PBB, result of the tally
r and proof of the tally Π, outputs 0 or 1. The algorithm outputs 1 only if Π
is a valid proof that r is the correct election result.

The election coordinator CO is responsible for generating the election’s keys
by executing the SetupElection algorithm. Anyone can verify the public key PK
using the VerifyPK function. Given the public parameters of the system, a voter
V can interact with the registrar R to obtain a public credential via the Register
protocol. Once the credential is validated using the VerifyCred function, the voter
can prepare a ballot b using the Vote algorithm and send it to the ballot box BB.
If the ballot is deemed valid according to the Valid function, it will be appended
to the public board using the Append algorithm. Voters can confirm that their
ballot has been correctly recorded on the public board by using the VerifyVote
function. The tallier T runs Tally to compute the election result and produce a
proof of correctness. Anyone can use these results and the contents of the PBB
to verify the election outcome with VerifyResult. The definition differs from that
proposed in [8] by introducing the VerifyPK and VerifyCred algorithms to address
our security model (see Section 2.2), where authorities are treated as adversaries
capable of generating malicious keys.
2.2 Voter Anonymity
Existing anonymity definitions in the voting context are either too informal (e.g.,
[27]) or focus on different security goals (e.g., [4,21]). We present a formal game-
based definition of voter anonymity, modeling the privacy of the voting system
described earlier. The definition requires that even if an adversary generates
a public credential for any chosen voter, it should still be unable to determine
which voter cast a specific ballot by observing the public bulletin board, provided
that these voters cast their ballots honestly. This condition must hold even if
the adversary maliciously selects PK of the election or revoting scenarios.
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Definition 2 (Voter Anonymity). A voting system VS has voter anonymity
if no PPT adversary A can distinguish between games Expanon,0

A (λ) and Expanon,1
A (λ)

defined by the oracles in Figure 1, that is for any efficient algorithm A:∣∣∣Pr
[
Expanon,0
A (λ) = 1

]
− Pr

[
Expanon,1
A (λ) = 1

]∣∣∣
is negligible in λ.

Oinit(1λ)

PK← A(1λ)
if VerifyPK(PK) = 0 then return ⊥
else return PK

Oregister(id)

if id has not been queried yet:
then d← 〈A,V(id)〉

if VerifyCred(d) = 0 then return ⊥
else CU ← CU ∪ {(id, d)}

OvoteLR(id0, id1, v0, v1)

if vi /∈ C or @ (idi, ?) ∈ CU for i = 0, 1
then return ⊥

if either id0 or id1 was queried in any other pair:
then return ⊥

else
Q ← Q ∪ {(id0, id1)}
b0 = Vote(idβ , dβ , v0)
b1 = Vote(id1−β , d1−β , v1)
Append(BB0, b0); Append(BB0, b1)
Append(BB1, b0); Append(BB1, b1)

Ocast(b)

if Valid(BB0, b) = 0 or Valid(BB1, b) = 0
then return ⊥

else Append(BB0, b); Append(BB1, b)

Oboard()

return Publish(BBβ)

Fig. 1: Oracles used in the Expanon,β
A (λ) experiment for β = 0, 1. The adver-

sary starts by invoking Oinit, followed by any sequence and number of calls to
Oregister, OvoteLR, Ocast, and Oboard. It then outputs its guess for the bit β,
winning if the guess is correct.

The game Expanon,β
A (λ) is parameterized by a bit β, and the adversary has

access to the following oracles:

– Oinit: Allows the adversary A to initialize the voting system by generating
secret and public keys for the election.

– Oregister: Lets A select a voter’s id and generate a corresponding public and
valid credential d for the voter. A obtains the view of the execution process.
The voter id and its associated credential d are then added to the list of
registered voters CL.

– Ocast: Allows A to cast a ballot b on behalf of any party. If the ballot is
valid, it is placed in both ballot boxes.

– OvoteLR: Takes two potential votes (v0, v1) for any two voters’ ids from CL,
produces ballots b0 and b1 for these votes and places them in both ballot
boxes BB0 and BB1, provided that v0, v1 ∈ C. In the case of revoting, the
adversary may only invoke this oracle for the same pair of voter ids already
present in CL, irrespective of their order, and not for mismatched or crossed
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pairs. This restriction prevents a trivial attack whereA could exploit revoting
to win the game by identifying repeated credentials on the bulletin board.

– Oboard: Returns BBβ , representing the view of the public bulletin board.

This game assumes that the adversary generates PK of the election, ensuring
voter anonymity by preventing even colluding authorities from linking voters to
their votes. This definition requires the ballot submission to remain anonymous.
If this anonymity is compromised, the adversary could exploit metadata, such as
network-level identifiers (e.g., IP addresses), or timing information to undermine
voter anonymity. See Section 4 for feasibility.
Voter Anonymity and Ballot Privacy. Ballot privacy ensures the overall pri-
vacy of the voting system by relying on tally simulation, as demonstrated in
Helios [1,3]. In contrast, voter anonymity excludes tallying and assumes two in-
distinguishable bulletin boards, where tally results provide no advantage to an
adversary. Comparing the two security notions is challenging, as they are based
on different structures. For instance, in the voter anonymity game, Helios (with-
out including the voter’s identity, as this would trivially allow the adversary to
win) displays identical ballots for the same votes, providing no means for an ad-
versary to distinguish between them. Additionally, unlike ballot privacy, which
relies on talliers not prematurely decrypting ballots, voter anonymity guarantees
privacy without requiring trust in talliers or other authorities.

3 The Construction based on Blind Signatures
We present a generic voting system construction, inspired by FOO [18] and
Cetinkaya et al. [7], by first introducing the necessary cryptographic building
blocks and then showing it satisfies voter anonymity. Detailed pseudocode is
provided in Figure 3
3.1 Building Blocks
CPA Encryption. A CPA encryption scheme is a public-key encryption with
three algorithms: (Gen,Enc,Dec). The key generation algorithm Gen(1λ), given
a security parameter 1λ, outputs the decryption key dk and encryption key ek.
The encryption algorithm Enc(ek,m) takes the public key ek and a message m
as input, producing a ciphertext c. The decryption algorithm Dec(dk, c) outputs
the original message m, given the secret key dk and ciphertext c.
Blind Signatures. Blind signature schemes, first introduced by Chaum [9], are
interactive protocols between a signer and a user, enabling the user to obtain a
signature that remains unlinkable to their identity.

Definition 3 (Blind Signature Scheme). A blind signature scheme BS is a
4-tuple of polynomial-time algorithms (SGen,S,U ,SVerify):

– SGen(1λ): On input security parameter 1λ, generate a pair of keys, the public
(verification) key vk and the private (signing) key sk.

– Sign〈S(sk),U(vk,m)〉: Is an interactive protocol run by a (stateful) signer S
with input the signing key sk and a (stateful) user U with input a message
m ∈M and the signer’s public key. It outputa σ for the user and no output
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for the signer. We write this as (⊥, σ) ← Sign〈S(sk),U(vk,m)〉 or simply
(⊥, σ)← 〈S(sk),U(vk,m)〉.

– SVerify(vk,m, σ): Outputs 1 if the signature σ is valid w.r.t. m and vk, 0
otherwise.

Correctness of a blind signature scheme requires that for any m ∈ M, and
for (sk, vk)← SGen(1λ), and σ output by U in the Sign execution, it holds that
SVerify(vk,m, σ) = 1 with overwhelming probability in λ.

The security of a blind signature scheme is defined by two notions: unforge-
ability and blindness [19, 22, 29] (see Figure 2). Unforgeability ensures that any
probabilistic polynomial-time (PPT) adversary U∗ engaging in at most k com-
pleted interactions with an honest signer S should not be able to output k + 1
valid message/signatures pairs with different messages.

Definition 4 (BS Unforgeability). A blind signature scheme BS is unforgeable
if for any PPT adversary U∗, the experiment Expuf

BS,U∗(λ) defined in Figure 2
(right) returns 1 with a probability negligible in λ.

Blindness ensures that a malicious signer S∗ cannot distinguish which of two
messages m0 and m1, was signed first during two executions with an honest user
U . This condition must hold, even if S∗ maliciously chooses the public key vk.
Here, we consider sequential attacks, where only one signing session is active at
a time. If S∗ refuses to sign one input (i.e., σi = ⊥), both resulting signatures
are set to ⊥, preventing any advantage from protocol disruption.

A blind signature scheme is secure if it is unforgeable and blind.

Definition 5 (BS Blindness). A blind signature scheme BS satisfies blindness
if for every PPT adversary S∗, the experiment Expbl

BS,S∗(λ) defined in Figure 2
(left) returns 1 with a probability negligibly close in λ to 1

2 .

Expbl
BS,S∗(λ)

(vk,m0,m1, st)← S∗(1λ)
b← {0, 1}

(st1, σb)← 〈S∗(st),U(vk,mb)〉 //1st session

(st2, σ1−b)← 〈S∗(st),U(vk,m1−b)〉 //2nd session
if σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥)
else σ ← (σ0, σ1)

b
′ ← S∗(σ, st1, st2)

return b
′ = b

Expuf
BS,U∗(λ)

(sk, vk)← SGen(1λ)

((m∗1 , σ
∗
1 ), . . . , (m∗k+1, σ

∗
k+1))← U∗〈S(sk),·〉∞ (vk)

return 1 if

m
∗
i 6= m

∗
j ∀i, j with i 6= j, and

SVerify(vk,mi, σi) = 1 ∀i, and
at most k interactions with S(sk) were completed.

Fig. 2: Security games of blind signatures [19,22].

3.2 Voting Scheme
Election Setup. The protocol follows the generic voting system in Definition 1,
with the election public key PK generated by both the election coordinator CO
and the registrar R, as the latter acting as the signer in the BS, responsible
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for issuing public credentials to voters. Both entities generate their key pairs
using functions: SetupElectionCO for the coordinator and SetupElectionR for the
registrar. The registrar generates its signing key pair using the SGen process
from the BS, while CO uses the Gen algorithm from the CPA encryption scheme.
The pair (ek, vk) form the public key PK, which is published on the PBB.
SetupElectionCO(1λ)

(dk, ek)← Gen(1λ)
L ← ⊥
if VerifyPK(ek) = 0 then return ⊥
else return ek

SetupElectionR(1λ)

(sk, vk)← SGen(1λ)
if VerifyPK(vk) = 0 then return ⊥
else return vk

Register(1λ)

(⊥, dV)← Sign〈R(sk, id),V(vk, τ)〉
L ← L ∪ {id}
return L

VerifyCred(τ, dV)

if SVerify(vk, τ, dV) = 0 then return ⊥
else return 1

Vote(id, τ, dV, v)

if VerifyCred(τ, dV) = 0 then return ⊥
else c← Enc(ek, v)
return b← (τ, dV, c)

Valid(BB, b)

if ∃b′ ∈ BB : b′ = b or VerifyCred(τ, dV) = 0
then return 0

else return 1

Fig. 3: Instantiation of our voting scheme using a blind signature scheme.
Registration Phase. A voter V must obtain a private credential. This process
begins with the generation of a token τ and interacting with the registrar R
through the Register protocol to acquire a blind signature dV on τ . During this
interaction, R verifies the validity of the voter’s identifier id. If the identifier is
invalid, the process is terminated. Otherwise, R and V execute the Sign algorithm
of the blind signature scheme. Upon completion of this interaction, V outputs
a signature dV on their token τ . The used id is then updated to the voter list
L on the PBB to monitor the eligible voters who have been registered to vote.
The registrar also stores the communication with each voter locally. If a voter
later presents an identifier idthat has already been used to issue a credential,
the stored communication will be replayed to ensure that only one credential is
issued per voter.
Voting Phase. The voter then prepares a ballot b using the function Vote.
Initially, the voter verifies the validity of their credential using the VerifyCred
function, which invokes the SVerify algorithm to confirm that the signature dV
is valid with respect to the token τ and the registrar’s public verification key vk.
If the verification is successful, the pair (τ, dV) is accepted as the voter’s private
credential. The voter then encrypts their vote v using the Enc algorithm of a
CPA-secure encryption scheme, resulting in a ballot b. This ballot is subsequently
submitted through an anonymous channel. The b is appended to the BB by the
Append algorithm only if it is valid, i.e., Valid(BB, b) = 1. A ballot is valid if it
contains a valid credential and no identical ballot has been previously submitted.
This means the system supports revoting; if the same credential reappears on
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the board (indicating the voter has previously cast a vote), the new ballot will
still be appended. Note that after ballot submission, the voters’ credentials are
available on the PBB. The implementation must ensure that no one can steal a
voter’s credential and vote on their behalf (see Section 4).
Tallying phase. During the tallying process, only the most recent ballot associ-
ated with each credential is considered. The process begins with the verification
of credential validity using VerifyCred. Following the exclusion of invalid ballots,
the tallier T runs the Tally function by decrypting each ballot and verifying that
the decrypted vote lies within the designated vote space C. Subsequently, the
tallier announces the election results. To ensure universal verifiability, the tallier
also publishes the decryption key dk on the public bulletin board. A voter can
verify whether their ballot has been properly processed and recorded by using
VerifyVote, which allows them to decrypt the ballot corresponding to their cre-
dential. It is noteworthy that since anyone can verify the election results using
dk, the role of the tallier is rendered superfluous since CO is capable of perform-
ing the same function. Thus, in the voting system the inclusion of an additional
entity as the tallier is unnecessary.
Remark. Since the ballot is transmitted through an anonymous channel, the vote
could technically be sent in plaintext. However, to mitigate the risk of influencing
the final election outcome based on the current state of the PBB, the votes are
encrypted using a CPA-secure encryption scheme.
3.3 Security of the Voting Scheme
Theorem 1. If the blind signature scheme utilized in the proposed voting system
satisfies the blindness property (Definition 5), then the voting system satisfies
voter anonymity (Definition 2).
Proof sketch. Due to space constraints, we provide only a proof sketch. The
experiment Expanon,β

A (λ) defines a game where an adversary A generates the
election public key PK = (ek, vk). By interacting with chosen voters via the
Oregister oracle, i.e., (st, dV) ← Sign〈A,V(vk, τ)〉, A gains state st in the blind
signing process and accesses the voter’s identity id. To append ballots to BB0
and BB1, A may query the Ocast and OvoteLR oracles.
Ocast appends an identical valid ballot to both bulletin boards, regardless of

whether the ballot is generated dishonestly. This does not provide the ad-
versary with any advantage, nor does it introduce any distinguishable dis-
crepancy between the two boards.

OvoteLR records two ballots, b0 and b1, which are generated honestly by two
voters’ ids chosen by the adversary, and adds them to both bulletin boards.
As defined, if β = 0, the oracle appends b0 = (τ0, d0

V, c0) and b1 = (τ1, d1
V, c1)

to both BB0 and BB1 in the exact order. Conversely, if β = 1, b0 = (τ1, d1
V, c0)

and b1 = (τ0, d0
V, c1) are added instead, where τ0, τ1 are randomly chosen by

the voters and blindly signed by A, and d0
V, d1

V are the unblinded signatures
computed by the voters using their secret blinding factors.

Several observations can be made about this game. First, the encryption does
not enable the adversary to distinguish between the two boards, even when the
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encryption keys are adversarially chosen, as the ciphertexts appear identical.
Additionally, recasting provides no advantage, as it merely appends the ballots
for same queried id pair to both boards. Second, if the adversary is able to dis-
tinguish between the two boards, this implies the ability to differentiate between
the credential pairs (τ0, d0

V) and (τ1, d1
V). This directly reduces to the blindness

property of the underlying blind signature scheme, where the adversary would
be capable of identifying which message was signed first during two sequential
interactions with honest voters (Figure 2).

End-to-end verifiability. Our voting scheme satisfies end-to-end verifiability, in-
cluding cast-as-intended, recorded-as-cast, and tallied-as-recorded verifications
[26]. Ballots can be decrypted using the election secret key dk, ensuring vot-
ers that their submission reflects their intent. Additionally, any observer can
independently verify that all valid recorded votes are included in the final tally.
Remark. This protocol outlines a basic voting scheme that ensures voter anonymity
through the use of a blind signature. Practical implementations, such as Opn.vote,
address further privacy considerations (e.g. eligible verifiability) as discussed in
the following section.

4 Opn.vote
Opn.vote is an instance of the voting construction in Section 3.2 and thus inherits
all security properties in Section 3.3. It employs CPA-secure ElGamal encryp-
tion [17] and the Schnorr blind signature scheme [28, 29]. To enhance security,
Opn.vote incorporates several modifications to the generic scheme.

– Public Bulletin Board: Instantiated as an Ethereum blockchain.
– Preventing Credential Theft: To mitigate the risk of stolen voter credentials

after ballot submission (e.g., frontrunning), each voter possesses a signing
key pair (skV, vkV) to sign their transactions; each transaction corresponds
to a ballot submission on the blockchain. The verification key vkV is unique
to each voter and vkV serves as the voter’s Ethereum public smart wallet
address. The key pair (skV, vkV) form the voter’s smart wallet.

– Registration Phase: The token τ is set as vkV. After interacting with the
registrar, a voter obtains a signature dV, which is the registrar’s signature
on vkV. Thus, (vkV, dV) forms the voter’s private credential.

– Voting Phase: Each transaction must be signed by the voter using skV. A bal-
lot is structured as b = (dV, c), which is signed by skV. Since vkV corresponds
to the voter’s Ethereum address, the Voting Smart Contract (VSC) extracts
it directly from the transaction sender, eliminating the need to include it in
the voting transaction.

– Recasting Votes: To recast a vote, a voter creates a new ballot b′ = (∅, c′),
where ∅ represents an empty element. After the initial vote, each voter can
be authenticated through their public key pkV, removing the need for a valid
dV in recasts.
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Voter Registrar

CO

Voting Smart Contract

Bundler Network (EIP-4337)

Sponsor Smart Contract (EIP-4337)
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Eligibility Check
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Hash Ref.

Sponsor Gas Fees

Fig. 4: High-level architecture of Opn.vote, highlighting decentralized networks
and smart contracts.

4.1 System Architecture

Election Setup. The Election Coordinator CO and Registrar R configure keys
within the VSC: The CO sets the encryption public key ek, and the R sets the
verification key vk used to validate blind signatures.

All election data is stored decentralized. Essential short-format data are
stored within the VSC. Long-format descriptions are stored on IPFS (InterPlane-
tary File System) [2] and referenced within the VSC, ensuring data integrity. The
CO defines sponsorship rules (e.g., vote recast limits per voter) in the Sponsor
Smart Contract (SSC) and funds it to cover transaction costs for voters. These
rules and funding are publicly accessible within the SSC. Opn.vote introduces
an eligibility check by the CO to validate voters before registration, reducing
the risk of ballot stuffing through the registrar R. During the election setup, CO
defines the eligibility criteria for the specific election (e.g., eID verification).
Registration Phase. The voter V completes an eligibility verification con-
ducted by CO. After successful verification, CO confirms voters in the VSC. The
voter V then interacts with R to obtain a private credential (vkV, dV) where dV
is the signature of the registrar on vkV.
Voting Phase. After encrypting the vote choice, V creates the ballot b. Voters
in Opn.vote do not need to pay for transaction fees, because it is sponsored by
CO. To make this works, EIP-4331 and its decentralized Bundler Network were
integrated. To submit the ballot to the VSC with sponsored transaction fees,
a User Operation object is created, which includes the ballot to submit, the
election ID and a reference to SSC. This operation is signed by skV and sent to
the EIP-4331 Bundler Network.

Nodes in the Bundler Network validate the submitted operations against the
SSC and its sponsorship rules, and upon successful validation, forward them to
the VSC via the main blockchain network. Nodes are reimbursed by the SSC
for gas fees incurred during processing. More details on the Bundler Network in
4.3. Gas sponsorship is an important feature of Opn.vote. Voters could also send
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voting and recast transactions directly to the main blockchain network at their
own expense. VSC does not impose any limit on the number of votes or recasts.

Upon receiving a transaction, the VSC verifies whether the voter’s address
pkV has previously submitted a valid ballot for the specific election. If a prior
vote exists, the new encrypted vote replaces the previous one. If the voter has not
yet voted in the specified election, the VSC checks the validity of the credential
dV against the registrar verification key vk and verifies that it is valid for the
voter’s address pkV. If both checks pass, the ballot is cast and stored in the VSC.
Tallying Phase. After the election deadline, CO publishes the decryption key
dk and the election results. Voters can verify their ballots and the results by
running the tally process locally.
4.2 Efficiency
To assess the feasibility of Opn.vote, we benchmark its gas consumption and local
computational load against other established voting applications in the field.

Gas-Cost Comparison. Gas costs are transaction fees to execute operations on
the Ethereum network. We evaluate two cryptographic combinations for on-
chain implementation in Opn.vote. The first combination, RSA, consists of
Blind RSA signatures and RSA encryption [29], while the second, ECC, uses
Schnorr blind signatures and elliptic curve ElGamal encryption. We aim to
compare Opn.vote with two active on-chain voting systems, MACI [25] and
Vocdoni [31]. However, since Vocdoni does not use a public blockchain for
voting, we restrict our comparison to MACI.

Table 1: Average gas consumption (in units) for one-time registration, voting,
and recasting on Ethereum Sepolia testnet.

System Register Vote Recast
MACI 248,870 436,864 436,852
Opn.vote (RSA) 394,525 396,388 92,836
Opn.vote (ECC) 161,541 176,264 47,701

Table 1 presents the average gas consumption from the registration phase
(which includes storing a voter’s public credential on-chain), a single voting
event and recasting. The combination using ECC signatures results in lower
gas consumption, primarily due to reduced storage used. This outcome is
expected, as ECC signatures are significantly smaller than RSA signatures.
Furthermore, Opn.vote using ECC reduces the total gas costs for one regis-
tration and one vote by ≈ 51% compared to MACI. The ≈ 90% reduction
in gas costs for recasting results from the separation of credentials and bal-
lots in Opn.vote, ensuring that only the ballot is updated during a recast.
In contrast, MACI employs zero-knowledge proofs, which increase on-chain
costs for each recast due to the computational complexity of the proofs.
Our experiments were conducted on the Sepolia testnet. While our real-world
deployment will occur on the Gnosis Chain Mainnet, both networks share
an Ethereum Virtual Machine (EVM) foundation, ensuring comparable gas
usage. Sepolia is used for testing, whereas the Ethereum Mainnet provides
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higher security against threats like double-spending and Sybil attacks [15].
The Gnosis Chain offers a balance, with lower and more predictable fees due
to its use of a stable asset (xDai).

Computation Performance. We compared Opn.vote’s computation time with
two well-known e-voting systems, Helios [1] and Civitas [11]. Helios and
Civitas rely on re-encryption mixes and shuffle proofs (measured on older
hardware), while Opn.vote utilizes lightweight blind signatures and modern
cryptographic libraries. As a result, Opn.vote demonstrates significant ef-
ficiency improvements, completing the preparation of 1000 ballots in 6.15
ms on an M1 MacBook Air (16 GB RAM), compared to 300 ms for Helios
and 20 ms for one ballot in Civitas, as reported in their original studies.
Additionally, Opn.vote tallies 500 ballots in just 635 ms, eliminating the
computational overhead from shuffle proofs seen in the other systems.

4.3 Implementation of Anonymous Channel
To preserve voter privacy in Opn.vote, an anonymous ballot submission channel is
required. While challenging, the decentralized architecture of public blockchains
offers advantages over traditional systems

After successful registration, voters are able to export a QR code containing
their private credential dV and private signing key skV. The vote submission pro-
cess is fully decentralized: voters only need a direct connection to the decentral-
ized network and no interaction with Opn.vote is required. Voters can generate
and submit ballots through the Opn.vote interface or use any third-party tool.

Sponsored ballots are submitted through the EIP-4337 Bundler network, a
decentralized network of nodes that aggregates and processes user operations,
similar to traditional blockchain node networks. The primary privacy threats
are caused by nodes potentially storing metadata, such as IP addresses, device
information, and timing attacks.

Timing attacks, in which an attacker links a voter’s identity by monitoring
votes cast immediately after registration, can be mitigated by ending the reg-
istration phase before the voting phase begins or by allowing voters to submit
votes with randomized delays. The threat of breaking anonymity through meta-
data is minimized by the decentralized nature of the network. With multiple
nodes and no default sharing of sender metadata (e.g., IP addresses), the crit-
ical factor for maintaining anonymity is the connection between the voter and
the first node they connect to. While Opn.vote suggests a default trusted node
for submitting ballots, voters can use the Opn.vote interface to select any node
they trust. While most public blockchains currently lack privacy at the network
layer, adding privacy at that layer could significantly enhance voting systems like
Opn.vote. For example, a mixnet implementation would prevent the entry node
from storing metadata, as an attacker would need to control multiple nodes.

5 Conclusion & Future Work
We present a cryptographic game-based definition of voter anonymity that resists
collusion and malicious key generation, and we introduce Opn.vote, a publicly
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verifiable and decentralized voting system. It prioritizes voter anonymity, as it
is critical for large-scale public elections, especially in politically sensitive envi-
ronments. Opn.vote ensures voter anonymity even in scenarios where all entities
collude and eliminates reliance on trusted entities or pre-existing cryptocur-
rency, significantly enhancing usability and accessibility, while reducing trans-
action costs by 51% compared to existing blockchain-based systems. Its design
ensures that voter privacy is preserved without requiring a trusted setup. The
system is set to be deployed in an upcoming large-scale elections, demonstrating
its potential for secure, accessible, and cost-efficient online voting.

To enhance the security of Opn.vote, we plan to implement a native app
with randomized submission delays, which would improve privacy against timing
attacks and allow a direct connection between voters and the first node of the
decentralized network. A second area of improvement is addressing the risk of
collusion between the registrar R and election coordinator CO, which could lead
to ballot stuffing. While the registrar can only stuff ballots up to the total number
of eligible voters, and CO publishes all successful eligibility checks, collusion
between these entities remains a concern. To mitigate this risk, decentralizing
these roles through Blind Multi-Signatures could reduce reliance and enhance
the robustness of the system.

Another concern is that a malicious CO could decrypt votes too early. A po-
tential solution is to use ZK-proofs and multiple CO. Finally, to counter the risk
of voters copying encrypted votes, including voter addresses in the encryption
scheme could mitigate this issue.
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